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ABSTRACT

A hydrodynamic model, based on shock diffraction theory and

the quasi-similarity solutions of blast wave theory, is developed to

describe the shock profile history in a metal target on which a hyper-

velocity metal projectile impacts. A finite difference integration of

the resultant method of characteristic solution is used to obtain

numerical results. A numerical example of aluminum impacting on

aluminum at a velocity of 20 km/sec is presented. The comparison

with the direct numerical results shows a good agreement for the

case selected.
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INTRODUCTION

In order to protect a space vehicle against meteoroid hazards,
it is necessary to understand the meteoroid impact phenomena and the
penetration mechanism. The meteoric particles, in spite of generally
being small in size, possess high kinetic energies because of their
hypervelocity nature (ranging from 11 km/sec to 72 km/sec). Generally
speaking, the term '‘hypervelocity impact' is defined as the collision of
two solid bodies with a relative velocity higher than the elastic wave

propagation speed in the material under consideration.

The impact mechanisms are governed by an extremely complex
system of nonlinear, partial differential equations with very complicated
boundary conditions. To solve this problem analytically is a rather
formidable task. Since 1958, several computer programs (Refs. 1
through 6) have been developed which permit complete solutions through
direct numerical analysis. A survey of this subject reveals that not
only a tremendous amount of computing time is required for operating
these computer programs, but large errors may develop because of
the numerical fluctuations inherent in such solutions. In spite of these
deficiencies , the numerical method is still considered the principal

approach to obtaining a complete solution of hypervelocity impact.

In addition to the numerical solutions obtained by the huge com-
puter programs, analytic solutions of hypervelocity impact have been
obtained by many authors. An excellent review of such solutions has
been given by Rae (Ref. 7). So-called ""analytic treatments' of hyper-
velocity impact usually refer to those approximate solutions which,
even though yielding less exact results than the numerical methods, are
easily obtained and, most importantly, still display the essential features
of the problem. Since solutions cannot be obtained in a rigorous manner
by the available analytic techniques without considerable simplifications,

clearly each approximate method is valid only for the conditions for

which the simplifying assumptions apply.




Blast wave theory (Refs. 7 and 8), for instance, yields shock
profiles in good agreement with direct numerical solutions at a late stage
of impact, e.g., an appreciable period of time after impact., The blast
wave solutions, however, are not applicable to the thin target plate since
the thickness of the target is comparable to the projectile dimensions
which invalidates point source assumption, The blast wave solution,
however, does reveal the important fact that there exists a close anal-
ogy between the propagation of shocks for a thick target resulting from

explosions and those resulting from hypervelocity impact.

In the present study, a cylindrical projectile impacting on a
target of infinite depth is considered, At the instant of impact, a plane
shock is generated on the target surface with the shock area equal to
the circular cross section of the incident primary cylinder, Considera-
tion is then directed to describing the shock profiles as time elapses,
The initial conditions are considered to be equivalent to a surface ex-
plosion of finite area on the target surface, an equivalence which has
also been used by Zeldovich (Ref, 9), among other Soviet scientists, as
the idealized model which describes the initial stage of impact. He did
not, however, actually calculate the subsequent shock profiles as
functions of time. The formulations of the shock profiles in the present
study are based on a shock dynamic theory (Refs. 10 and 11) in fluid
mechanics, The two-dimensional method of characteristics is employed
to calculate the successive positions of shock waves as a function of
time. The equations of state for metals are used in the formulation, and

the shock interaction with the free boundary is also considered.

The major shortcoming of this theoretical model is that it yields
no information on the properties far behind the shock wave except imme-
diately at the shock as deduced from Hugoniot relations. Because the
shock wave develops in a hemispherical shape in a short period after
impact, quasi-similar solutions of blast wave theory (Ref, 12) are used

to approximate the fluid functions in the region behind the shock wave.




The object of this study is to calculate the shock profiles result-
ing from hypervelocity impact and to use these results in predicting the
impact phenomena such as crater formation and spallation fractures.
The applications of shock propagations in solid medium will be reported

later.

A numerical example is given in this report and compared with
the existing results of other investigations, The agreement in general

is good,

The author wishes to express his appreciation to Mr, Carl Young
for his discussions of the problem; and Dr. G. R, Guinn for his guidance

and encouragerment during the course of this work,




THEORETICAL MODEL OF IMPACT-GENERATED SHOCK
PROPAGATION IN SOLID MEDIA

The physical features of hypervelocity impact can be illustrated
schematically in Figure 1, in which a cylindrical projectile traveling at
a high velocity is assumed to strike a semi-infinite target. Immediately
after the impact (Figure la) there are two strong shock waves moving
in opposite directions: one traveling forward into the target and the
other backward into the projectile, The pressures generated by the im-
pact are so high in the material through which the shock has passed
that the material strength is comparatively negligible, Therefore the
material behind the shock wave is considered to behave essentially as
an inviscid, compressible fluid., As the shock wave advanced further
into the target material, the plane portion of the shock wave is gradually
"consumed'' by the rarefaction waves from the corners (see Figure 1b).
The shock front becomes distorted and attenuated in strength, and even-
tually approaches the shape of a hemisphere, After an extended elapsed
period of time after impact, the crater is formed in the target (Figure 1lc).
Further advancement into the semi-infinite target will cause the shock

wave to degenerate into the plastic waves and then into the elastic wave,

The geometric development of the impact shock, in an idealized
sense, resembles a moving shock in unsteady, supersonic flow. Figure
2 illustrates a normal shock moving along a channel whose wall is sud-
denly enlarged and, as a result of the enlargement, the shock wave
changes its shape as it propagates into the enlarged area with subse-
quent diminishing of the plane shock by the rarefaction wave issuing
from the corner of the wall, The mathematical formulation of this prob-

lem will be given in the next two sections.
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Figure la also illustrates the manner in which the material
particles are splashed upward from the free boundary of the target,
and the shock wave's interaction with the target surface. The inter-
action between shock waves and the free surface should be considered
as the boundary condition in the calculation of shock profiles as will

be described later,




FORMULATION OF THE CHARACTERISTIC EQUATIONS

The mathematical formulation of the shock profile relationships
are based on a shock dynamics theory suggested by Whitham (Ref, 13)
for plane shock with a corner., In the present study, the two-dimensional
computational scheme is essentially the same as that of Skews (Ref. 10),
while the formulation of axisymmetric case follows a recent paper of
Hayes (Ref, 11), It should be noted that the formulations of this section
only apply to a region away from the free surface of the target, In the
neighborhood of the free surface, shock waves and free surface inter-

action are considered separately in a subsequent section.

TWO-DIMENSIONAL CASE

In Figure 3, an orthogonal coordinate system (f , t) is constructed
to describe the motion of shock waves, where t corresponds to the suc-
cessive instants of shock wave history and P is called '"ray'' to describe
a specific portion of the shock wave, A basic assumption is that each
small portion of the shock, which is bounded by a ''ray-tube', may be
treated independently as one-dimensional flow and obeys the shock
propagation law, The shock propagation law is a relation between the

ray tube area A and the shock velocity U:

A = A(U) (1)

which will be derived in a later section,

In the physical plane (Figure 4), the arc lengths PQ and PS are

defined as

PQ = U dt

&
n
"
>
o
5
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Let 8 (B , t) be the angle between the ray and a fixed direction,

Then the change of 8 from P to S is

OR - PS _1.._1_\.
% =755 =y P
or
06 1 0A
—_—— T s = 0 . 2
a3 U ot 2)
Similarly,
o _ BR-PO _ 1 au_
-00 = Bs. =A% 6t
or
20 1 oU _
%A a9 = ° . (3)

Notice that the derivations above are obtained from purely geo-
metrical reasoning. A combination of Equations 2 and 3 indicates the

kinematic relation between U and A:
] Ry . oA + - a 10U = 0 . (4)
ot\U gt \A 98

When Equation 1 is combined with Equation 4, the shock positions
are determined for all times, The kinematic relations may be written

in terms of U as follows:

90 _A(U), 30 . (5)
aB ot




% . _1 au (6)

ot VAW o T °
or equivalently,
_a_m,ﬂ)+@_<_1_.ﬂ7:o (7)
ot 8] ot oB\A(U) ap
where AY(U) = d‘:UU .

The above equations are analogous to the equations of non-
linear sound waves or two-dimensional steady supersonic flows;
hence the existing theories of compressible fluid flows on these topics

can be equivalently applied to the present problems,

By the theory of characteristics, Equations 5 and 6 yield

) 2 \/( S" du
Laic-L e\ ==) =0 (8)
< ot aB) \ AC>
where C is the equivalent ''sound speed'":
4 L
_ 2
¢ ]t o

A(U) AY(U)

Let £4, £_ be the Riemann invariants of characteristics Cy

and C_, respectively., Then Equation 8 gives

Ct. 0+ w(U) = 24 on%? = +C (10)
C.. 8- «(U) = 2 on'g%} = -C (11)

and
ooy =§ 49 | (12)




Let m(e, B) be the angle between a characteristic and a ray (see

Figure 5). The characteristic lines have the direction

dy

= t 0 £

e an ( m) (13)
on the physical plane. The positive sign in Equation 13 corresponds to
left-running characteristics and the negative sign to right-running charac-
teristics; m is equivalent to the '""Mach angle' in two-dimensional steady

flows.

Figure 6 shows that the increment PR along a left- running

characteristic can be related to dt and df in the (B, t) plane by

dx = U dt cos (6 + m)/(cos m)

dy U dt sin (6 + m)/(cos m)

or (14)
dx = A dB cos (6 + m)/(sin m)

dy = A dB sin (6 + m)/(sin m)

and

tanm =

cl»

A
ik (15)

Similar relations can be found for right- running characteristics

by simply changing 6 + m to 6 - m in Equation 14,

Figure 7 shows that a plane shock, starting at the edge of a solid
medium enters a sudden enlargement area at time t = 0, For t > 0, there

are two central fans emitted from the "corners', which cause the shock

12
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front to expand, The normal shock portion is therefore diminishing in
the course of time. Before the time t. (defined in Figure 7), the physical
picture is a simple wave pattern. Therefore U, 0, m are invariants

along a characteristic line, Direct integration of Equation 14 yields

x/t = Ucos (6 +m)/cosm+ x,/t

y/t = Usin(6 + m)/ cos m + yo/t

(16)
x/B = A cos (6 +m)/ sinm + %0/

y/B = A sin(8+ m)/ cos m+tyg,/u

where (%o, Yo) is the initial point. Similarly, changing m to -m in

Equation 16 gives the integrated equation for right-running characteristics,

When t > t., the simple wave theory ceases to apply and the shock
profiles can be predicted only by constructing the characteristic nets,

in the same manner as a two-dimensional nozzle flow field.

The simple wave solution of two-dimensional cases is only
hypothetical, since the shock waves generated by the projectile of finite
dimensions are three-dimensional. The axisymmetric case is the

simplest three-dimensional flow configuration.

In the next subsection, similar treatment will be given for axi-
symmetric impact problems., A finite difference numerical scheme
is adopted because of the nonexistence of simple wave solutions. To do
so, a starting line should be chosen to construct the net of characteristic
lines.* The solutions on the starting line are the simple wave solutions

described in this subsection,

¥In steady, axisymmetric supersonic flow calculations at the exit of a
nozzle, the Prandtl-Meyer expansion fan, which is a simple wave
solution, is used to provide such a starting line (Ref. 14).

15




AXISYMMETRIC CASES

As mentioned previously, the characteristic equations for
axisymmetric shock propagation can be formulated in a similar way as
in two-dimensional case, except that the basic coordinate system ($, t)

must be redefined.

To construct the axisymmetric solutions, the basic coordinate
system (B, t) is defined such that the distance along a ray between the
“shock positions given by t and t + dt is U dt, and that A df/r is the
distance between the ray § and 8 + df; r is the distance from the axis

of symmetry and U is the shock velocity (see Figure 8).

Let 6 (8, t) be the angle between the ray and the axis of symmetry.
The change of 68 from P to S (see Figure 9) is

RO-PS 1 2 A
8 =755 U atr OB
or
206 1 2A A _
28 Ur ot + 2 sin® = 0 (17)

where the relation (U 9t)/dr = sin 0 is used and 6 = 0 at the axis of

symmetry.

A similar treatment for the change of 6 from P to Q gives

90 L x 20U _ . (18)

x
ot A 98

Let 5¢ = A8B/r be the distance between the rays §and § + 6.

Equations 17 and 18 then become

16
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026 1 QA sin 6
" A Ut Ty 0 (19)
and
30 . au_
vet uaz ©° - (20)

Assume that the shock propagation law, i.e., the shock speed

and area relation, is expressed in the form (see page 41)

4 _ 1 av
A 7 p,z U
where po= w(U).

Equation 19, then, can be rewritten as

20
g

QU _, sin 6
U9t r

e
i

@

Applying the theory of characteristics in Equations 20 and 21

yields
dU | sin O
s == 2d0 +p——Udt = 0 (22)
L pU L
along.
d 4
s —— = % (23)
Cx: Ta i

where I't is the compatibility equation of the physical characteristics Cy.

18




For a given initial shock shape, the shock shape at later time

can be obtained by constructing a finite difference net in the same

manner as that of a steady supersonic jet downstream of the nozzle exit

section,

Two boundary conditions must be imposed. One is simply that

The other coandition is on the free boundary where the shock wave inter-
acts the free boundary. The interaction will be described in a later

section,

19




HUGONIOT RELATIONS OF SHOCK WAVES IN SOLID MEDIA

When a shock wave moves into a stationary medium, the flow

variables across a shock are governed by the following laws:
® Conservation of mass
po U = p (U - u) (24)
@ Conservation of momentum
p- Py = poUu (25)
® Conservation of energy

e-eo=§<po+p)(§;--:;) (26)

where U, u, p, p:. and e are the shock velocity, fluid velocity, density,
pressure, and the specific internal energy of the fluid, respectively.

Subscript 0 refers to the undisturbed (or stationary) region.

One more relation is needed to solve the flow across a shock,

i, e,, the state equation of the material
e = f (p,p) . (27)

Recently, many studies have been conducted (Refs. 15, 16, and 17) on
the state equation of solid material. So far, no simple and general
equation has been formulated. For the sake of convenience, an equation,
which relates the shock velocity and the particle velocity u, is used in
this work. In general, there are two forms: one applies to so called

'""e, s material'’; the other applies to aluminum,

c,s MATERIALS

In Reference 16, McQueen, et al, use a linear equation

U = c+4+su {(28)

20




which relates the velocities U, u for most metals. c is the dilatational
wave speed and s is a constant which is tabulated for 16 materials in

their paper. The materials which obey Equation 28 are classified as

"¢, s materials",

Substituting Equation 28 into Equations 24, 25, and 26, the

flow variables are obtained:

U = (U-c<)/s s (29)
s U
p=(s—l)U+cpo ’ (30)
and
p = H___(y;'_C_l po . (31)

The slopes of the Rankine-Hugoniot curve, Ce_m in the (p, p)

plane is given by

2 c? 2
CGcoH T IT (2 Mg - 1)[(s-1)Ms +1] (32)

where Mg = U/c is the shock Mach number. c.y differs slightly
from the adiabatic sound speed as Mg nears 1, but appreciable

discrepancy is found for large shock Mach numbers.

The adiabatic sound speed, a = (gp/dp)s, should be derived
by an isentropic process which requires the explicit form of the state

equation, Equation 27. But for c, s material, the adiabatic sound

21




speed, a, can be obtained approximately in terms of the material
constants ¢ and s. The resultant expression is
o2
2 C-H

a® = —5— [(3s-1)(s- 1) Mg" - 2 (s® - 35 + 1) Mg - (25 - 1)]

(33)

A detailed derivation is given in the Appendix, and a comparison

of a and CR-H is made in Figure 10,

It is of interest to point out that the c, s material is very
similar to a perfect gas. The range of s varies from 1.2 to 1.9 for
most metals, which is analogous to the specific heat ratio of gases.
But, it should be stressed that the ¢, s relation is only an empirical
equation., Its accuracy is highly questionable when the shock pres-

sure is greater than 2 megabars.

ALUMINUM

Aluminum is one of the exceptional metals which do not follow
the linear shock relation of Equation 28. Instead, the shock relation

for aluminum is expressed in a quadratic form as

U = a; +az u+asu’ . (34)

In addition, the adiabatic sound speed a is also a quadratic

function of u:
a = by +by u+bsu® . (35)
For simplicity, the coefficients aj and bj used in this study are

obtained by fitting them into the table of Chou et al (Ref. 18) (see
Table 1).

2.2
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TABLE 1. COEFFICIENTS OF EQUATIONS 34 AND 35

u <5.0 (mm/usec) u> 5.0 (mm/usec)
a) 5.985 5.278
a, 1.237 1.503
as -0.001 -0.0271
b, 6.883 5.101
b, 0.9849 1.518
by -0.0084 -0.048

Chou's table was established by using the Tillotsen equation
(Ref. 14) (for p > 1 mb) and the experimental data of the Los Alamos
Laboratory (Ref. 16) (for p =1 mb).

Again, Equation 34, combining Equations 24, 25, and 26,

provides the shock relations needed in the next section.

24




SHOCK PROPAGATION LAWS

As mentioned previously, a shock velocity and area relation
(Equation 1) or shock propagation law is needed for completing the

characteristic solutions. Egquation | is derived in this section,

A shock wave moving in a channel with varying cross-
sectional area is considered. The shock strength attenuates if the
channel area increases downstream; and conversely, the shock wave
would be strengthened if the channel area converges, This phenom-
enon is well-known in blast wave theory. Even if the fluid is assumed
frictionless, the shock front velocity decreases very quickly and
approaches the velocity of sound at a large distance from the source
of explosion. The enlargement of the shock front area results in atten-
uation of the shock strength, or, in the equivalent, a reduction of
shock velocity. The shock propagation law relates the change of the

shock velocity to the change of the channel area,

The shock propagation law was first obtained by Chester
(Ref. 19) and Chisnell (Ref. 20) from a linearized approximation of
one-dimensional compressible flows. Their results were later
rederived by Whitham (Ref. 21) who applied a simple rule in the non-
steady, one-dimensional flow theory. Their result is sometimes
called "CCW Approximation'. In this section a shock propagation law

is formulated for solid media.

Whitman's rule can be stated as follows: the flow quantities
along a characteristic line must be equal to the flow quantities just
behind the shock wave. With this rule and the Hugoniot relation, a
differential relation is obtained, which describes the motion of a
shock wave down a nonuniform area channel. In hypervelocity impact

problems, a plane shock is generated initially at the interface between

25




the projectile and the target, and the shock front area suddenly enlarges
while it propagates into the target. Then the shock propagation law is
applied under the assumption that the whole {low field is composed of a
number of one-dimensional ''rays' (see page § ), each one of which

independently obeys this law.

For one-dimensional, unsteady flow in a variable area channel,

the governing equations of the fluid flow may be written in the following

form:
& 4,0 gu,u  da)
at+uax+p<aX+A . o, (36)
Ju du ,a’  9p
— tu—/—+— - = 0 ,
ot v ox p 0x (37)
and
ge , 2 _ P (% .a_p_>
— tu—7/—" - = + = 0 . 38
ot " ax  p? (at ™ (38)
Applying the theory of characteristics to Equations 36 and 37
yields
r:;:’ do £ au + —E——dA = 0 (39)
P, M A (u + a) -
on the characteristics
14 dx
(OF _ch‘ = uztxa

where I;: denotes hodographic characteristics and Ck denotes physical

characteristics.
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To apply Whitham's rule, the {low quantities on the outgoing
characteristics C_; are matched with the flow quantities behind the

shock wave. The appropriate branch in Equation 39 is

£ e

A
dp ,a  dp ,du  du dA (40)
p p u a A
The terms p, a, and u are functions of shock velocity U and
the material characteristics. Equation 40 can thus be integrated and

the integrated equation represents the shock propagation law.

For ¢, s material, Equation 40 becomes

dA 2 dU
= L e == 41
where Mg = U/c and
1 1 4 Mg

p2 T [+ (- 1) M)  Mg-1

+ T
{[(s-1)Mg +1] [(3s - 1) Mg - (25 - 1)1} 32

1
{[(s - 1)Ms +1][(3s - 1) Mg - (2s - 1)]}®
¥ (Mg - 1) [1 + (s - 1) M] - (42)

For the case of strong shock, Mg = U/c -~ o , Equation 42

reduces to

o)

. _l(s-1) (35.- 1)]

Po = (43)
1+[(s-1)(3s-1)]

[
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For aluminum, the function “z in Equation 41 is

2 _Uf(u+t+a) 1 1 1 1

+ = +
u U U-u (U-u)(az +2a3 u) a(az + 2a3 u)

e
(44)

where a and u are functions of U, as shown in Equations 34 and 35 of

the previous section.
Integration of Equation 40 yields

A(U)= K exp (-S p? %) (45)

which is Equation 1 on page 8 . K is an integration constant,

Notice that the integration in Equation 45 can be carried out
explicitly through a tedious procedure. But in actual computations,
only the function p is used. The computational procedures will be

discussed in a later section.




SHOCK WAVE INTERACTION WITH FREE BOUNDARY

As stated previously, information about shock-free surface
interaction is required to specify one of the boundary conditions in
constructing the characteristic solutions. Figure lla shows an expan-
sion fan behind the shock, through which the pressure drops from the
value immediately behind the shock wave to zero at the tail of the fan.
The physical picture is analogous to Prandtl-Meyer expansion around a
convex corner except that the expansion fan is three-dimensional and
unsteady in nature. The shock front would attenuate and is distorted

by the rarefaction waves,

A simplified model has been proposed by Russian scientists
(Ref. 22) to estimate the shock inclination. Recently, Rae (Ref. 7)
applied it to the impact-generated shock propagation, but he chose
ideai gases in the formulation. In the present study, Rae's formula-

tion is generalized to solid media.

From Figure 11b, if the shock inclination B is greater than a
certain value 3%, called the '"critical angle', the rarefaction waves
cannot reach the shock front. Therefore, if the original shock inclina-
tion B > B%*, the shock motioh along the free surface will not be affected
by the free surface interaction. Conversely, if B > B%, 8 will change
continuously and eventually approaches B*. The shock will remain

undistorted afterward.

The transition phenomenon (B~ *) is rather complex in mathe -
matical analysis, because an unsteady and three-dimensional flow prob-
lem is involved. In this work, it is assumed that the transition period
is so short in the development of shock profiles that it can be neglected.
Then f = B * will provide the boundary condition at the free surface; f *

depends on the local shock strength and is derived by Equation 46,
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Referring to Figure 11b, the cosine law gives

=Y

BC®’ = AB® + AC® - 2AB + BC cos f*

or

2 w? + U /cos® Bx=-2uU

o
1

and

a

-1 2 2u |, u’ %
B* = cos (—U—Z -7 +-ﬁ-5) . (46)

Equation 46 indicates the critical shock inclination angle 3%,
as a function of U, u, and a. Since a and u can be expressed in terms

of U, B* actually depends on shock velocity U only.
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CONSTRUCTION OF NUMERICAL SOLUTIONS FOR
SHOCK WAVE PROPAGATIONS

INITIAL NORMAL SHOCK WAVES

When a projectile impacts on a target with relative velocity V,
two normal shock waves are generated at the interface and move in
opposite directions with respect to the interface (Figure 12a). The
normal shock solutions can be obtained by applying Equations 24,

26, and 28 or 34.

For similar material hypervelocity impacts, the particle

velocity equals to half of the impact velocity (Figure 12b),

us = uz = V/2 . (47)

Equation 47 is derived by taking a velocity transformation. If
the projectile and the target move in opposite directions with the same
speed V/2, the fluid particles behind the shock waves should be motion-
less as a result of symmetry with respect to the transformed coor-

dinate system.,

For nonsimilar material impacts, a contact discontinuity inter-
face exists. But the pressure and velocity functions are assumed
continuous across the interface; P3; = Pz and us = uz. From Equation

25,

P = po uz U (48)

and

Py = p1 (V=-u3)(V-1y)
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With the aid of shock relations, Equation 28 or 34, the solu-

tions of U, and Uy are readily found.

SIMPLE WAVE SOLUTIONS

As shown in Figure 13, Up is assumed to be the normal shock
velocity calculated in Equation 47 or Equation 48. Then the ""Mach

angle' mg can be obtained from Equations 15 and 41,
mo = tan ' [ (Uo)] (49)
and
6p = O

Next, a shock velocity Uy is chosen such that Uy < Up, and

mgo is calculated from Equation 49, The shock angle 0; is

U,

dU

6; = S —— . (50)
Yo U 1 (U)

The shock position of point 1 is determined by

x
T}' = U cos (6 + m;)/cos m
and
th- = U; sin (0; + m1)/cos m) (51)

where t is the time after impact.
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FIGURE 13. CONSTRUCTION OF A SIMPLE WAVE SOLUTION
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Repeating the procedure, by choosing a sequence of shock

velocities Uz, Uj, **** Uy, mi, 6j, xi/t, yi/t (i =2,

n) are

determined in the same manner. The computations continue until

xo/t = 0. This completes the construction of a simple wave solution.

ASYMPTOTIC SOLUTION OF TWO-DIMENSIONAL SHOCK PROFILES

FOR STRONG SHOCK

An analytic expression of shock profiles can be obtained for

large U in simple wave solutions. c¢, s material is chosen in the

formulation that follows.

The function p(U) for a ¢, s material in the shock propagation

law approaches a constant as U ~ o (Equation 43), and is denoted by

K. Therefore

Up
1 dU 1
o ("8,
and
§]
U = Ug e'®
The shock wave locus is in the form
= e cos (0 + mg)/cos my,
Uo ¢t
and

ﬁl—? = ol® 6 sin (6 + me)/cos my
0

-1 .
where me = tan”™ Mg is a constant,
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1
Letting R = (x° + y2 )%, Equation 53 may be expressed in polar
coordinates as

Moo @ (54)

where
@ = 6 +mg

k = _..LJ.O_t__ e"moo .
COS Mgy

Equation 54 (see Figure 14) represents a logarithmic spiral
curve, and has been derived by Skew (Ref. 10) for an ideal gas. How-
ever; it should be emphasized that Equation 52 must be used with
caution since the simple linear shock relation of ¢, s material may

not be valid for very strong shocks.

FINITE DIFFERENCE SOLUTIONS FOR THE CHARACTERISTIC
EQUATIONS

For an axisymmetric impact problem, the simple wave solu-
tion only provides the initial condition. Two boundary conditions are

used:

@ 0 = 0 at the axis of symmetry

@
[e2]
"

- (B* + %) on the free surface.

The method of characteristics is applied in computing the
shock profiles. To do this, the characteristic equations, Equations
22 and 23, are first written in f{inite difference forms, and the solutions
are then constructed by using the numerical techniques of compressible

flow theory (Ref. 14},
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FIGURE 14. APPROXIMATE SHOCK PROFILE FOR THE STRONG SHOCK
SITUATION (U LARGE) '
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The finite difference scheme developed herein differs from the
conventional method. The present scheme is designed to construct the
shock profiles for successive time intervals. Instead of using two
known field points to obtain the third new point, only one point and the
time interval At are chosen to determine a new point. The advantage
in this numerical scheme is that the successive shock profiles as a
function of time can be directly computed without interpolations between
the field points. The resultant finite difference equations are
programmed on the IBM 1130 digital computer and results will

be presented in a later section.
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AN APPROXIMATION FOR PRESSURE PULSE AT
LATE STAGE OF IMPACT

The shortcoming on the present shock propagation model is
that no information is given the flow variables behind the shock
wave. The flow field of a diffracting shock wave is too complicated
to be obtained analytically. Probably this is the reason for the
development of direct numerical programs, such as PIC code and
Eulerean Code, since the flow variables are significant in the

description of the impact mechanism,

At the late stage of shock propagation, it is found that the shock
front develops rapidly into a sphere-like shape, and the flow variables
vary gradually around the shock front, These facts suggest that it is pos-

sible to obtain an approximation for the flow field at the large elapsed time,

To find the approximate solutions in the flow field, the equations
for three-dimensional, unsteady flow with symmetric axis are written

in a spherical coordinate system. These equations are

dur,  gur, B¢, dur_ v* 18P _
ot Fur Or T do r +p dr 0
Sug, ,, du¢, B0 Jup ueur 1 3 _ 4 (55)
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dp Yo Oe _ 4
r d

@
S

where ur and up represent the velocity components in the r and @ direc-

tions, respectively (Figure 15),

Expanding the variable u,, ug, p, and p in Fourier series yields

o0

u,.(r, @ t) = ug (r, t) + Z un (r, t) cos no (56)
n=1

00
ug(r, @ t) = Zvn(r, t) sin n@, etc.
n=1

By substituting Equation 56 in Equation 55, the zeroth order

equations are obtained:

20, du, 2o, 3u _
at+p8r+u8t+r =0

aT+“5§+_'5r = 0 (57)

In the above system of equations, u = uy and the subscript ''o'" is dropped.

Equation 57 is identified as a one-dimensional, unsteady flow
equation system., A transformation of the dependent and independent

variables is introduced as
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FIGURE 15. SPHERICAL COORDINATE SYSTEM WITH SYMMETRIC AXIS
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u = Uf,

P = po U g,

P = poh,

£ =3 (58)
and

o -9

where R is the shock front position,

tion 57 become

oh, . ot

(f—g)aé+ha +
1

(f-g)‘g‘fg‘+)\f+'}-l

The first two equations of Equa-

2fh oh .
———g = -\ U-—aU (59)
ad af

g‘g = _)\Ué-il (60)

Note that f, g, and h are functions of two variables; £ and R(t).

Solution of the above system of equations is still a very difficult task.

In general, the similarity solutions do not exist because the assumption

of strong condition may not be justified,

In fact, when the impact-

generated shock wave becomes a spherical shape, the shock strength

is usually weak,
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Now, two assumptions are imposed:

f =18

oh h_  dh,

— e, e g

? h, dU

where f;, h; are the functions evaluated at the shock front (£ = 1) and

they are time-dependent functions,

The first assumption is made because the numerical solutions of
other studies (Refs. 8 and 23) show that the velocity functions are nearly
linear*, while the second assumption is based on a quasi-similarity theory

by Oshima (see Ref, 12),

From Equations 59 and 60, combined with the assumptions above,

g and h are readily obtained:

~ [ m+2

(61)
h o= hy g7
where g; = g(l, t) and K, m are functions of fi,» g1, hy, and \.
In terms of physical quantities, the solutions are
u = uy r/R
p = py (r/R)T (62)

~ r \ m+2
P = po UZA[("§> - l]

* The first assumption was also made by Rayzer (Ref. 24) and Sakura
(Ref. 12).
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where

3u, /U+ \U/p, - 5—%

(ul - U)/U

and

A ~f)’—‘- [%’g(ul-U)+}‘—[I‘—1-L+ UQ%LJT/—@]/(5+2)
(o]

The subscript ; denotes the Hugoniot flow quanitites,
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NUMERICAL RESULTS AND DISCUSSION

In this section, some numerical results are presented. Based
on these results, discussions are given on the theoretical model pro-
posed in this study. Since some of the assumptions imposed in this m
model are subjected to question, it is necessary to compare the pres-
ent results carefully with numerical data available from other studies,
Because of the complexity inherent in this problem, the justification

of some assumptions can be achieved only through such a comparison.

THE STARTING POINT OF SHOCK CURVATURE

In Whitham!'s rule, the effect of disturbances behind the shock
wave is ignored. The justification of this model is difficult to establish
because the information on the flow field behind the shock wave is still

meager,

Point A in Figure l6a represents the location where the shock

curvature starts. By the CCW approximation, the following is obtained:
tan mo = K(Uo)

But mg can also be predicted by an alternative equation:

1

tan mg = % [1 - (U—u)z] : . (63)

a

Equation 63 was derived by Skew (Ref. 25) and also by Heyda
(Ref. 26) to indicate the point at which the normal shock wave is first
reached by the rarefaction wave from a turning corner. It must be

pointed out that Equation 63 is orly an approximation because the
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velocity u and sound velocity a depend on the locations behind

the shock wave,

A comparison of the above two approximations is shown in
Figure 16b. For high impact velocities, the discrepancy between
these two predictions is small, but large discrepancy exists in the
low velocity region. Skew (Ref. 23) performed an experiment for
shock waves diffracting around a corner. Observation of the shock
shape favors the prediction of Equation 63. This may imply that the
this is not a definite conclqsion since the impact-generated shock
waves in solids may be different from the compressible flow waves

in Skew's experiment,

THE SUCCESSIVE POSITIONS OF SHOCK PROFILES

A numerical example of aluminum impact on aluminum at a
velocity of 20 km/sec is presented in Figure 17 that the positions
of shock profiles are functions of successive time steps. The normal
shock portion vanishes very rapidly and it completely disappears at
about 5.5 microseconds. The shock profile develops further into an

ellipsoid and eventually approaches a hemispherical shape.

The appearance of hemispherical shock shape inspires the
assumption of spherical symmetry made by many investigators (see
(Ref. 7). This assumption is justified only if, after a long period
of time, the shock strength has attenuated considerably and degener-
ated into the speed of sound. Soon after impact, the shock shape is
far from spherical and the flow properties vary along the shock front.
The pressure distribution, for instance, has the highest value at the

symmetric axis and decreases in value toward the target free surface.
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PRESSURE DISTRIBUTIONS

A comparison is made with the numerical results obtained by
Heyda and Riney (Ref. 27) concerning the peak pressure along the
axis of cylindrical symmetry, Figure 18 shows that for (z/d) < 1
the pressure is equal to Hugoniot pressure obtained by the normal
shock relation since the plane shock generated at the interface has
not been affected by the rarefaction waves from the corner, The
pressure then decreases drastically as the shock wave advances into
the target, The discrepancy of these two results at the early stage
is mainly caused by the '""numerical diffusion'' effect inherent in the
direct numerical scheme, Errors of about 30 percent occur compared
with the exact solutions, However, the agreement in general is good
except the late stage in which the present solution is consistently
higher than the direct numerical solutions. This is believed to occur
when the rarefaction waves reflected from the rear surface of the
projectile are not considered. Such rarefaction waves are known to

attenuate the target shock strength (Ref, 18).

The angular distributions of shock pressure are shown in
Figure 19 so that the pressure gradients in  =direction are indeed
small for large elapsed time, This phenomenon provides the basis

of formulating the quasi-similarity solutions in the previous section.
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SUMMARY

A theoretical model based on shock diffraction and blast
wave theories is developed to describe the propagation of impact-
generated shock waves in solid materials, The successive positions
of two-dimensional and axisymmetric shock profiles are obtained
by using the method of characteristics, The present analytical
model, which differs from the usual numerical approaches, such as
PIC and OIL codes, can eliminate the unrealistic cell pressure

fluctuations caused by numerical diffusion,

Limited comparisons with the existing numerical results
are satisfactory although not conclusive, More comparisons,
especially low impact velocity ranges, are necessary to reach a

definite conclusion,

The rarefaction wave reflected from the back surface of the
projectile is ignored in the present study. It is anticipated that such
rarefaction wave can alter the strength and the shape of the target
shock, Moreover, the flow variables in the shock region are also
affected by such rarefaction waves, Further investigations on the

rarefaction effects in the target are recommended,

53




APPENDIX. SOUND SPEED OF ¢, s MATERIAL
BEHIND THE SHOCK

The Mie- Grineisen equation of state is

P-pPo = pT(p)le-ey) (A-1)

where the subscript o denotes the initial state and I'(p), the Griineisen
ratio, is a function only of density, Differentiating Equation A-1 with
respect to e at constant p, the following expression for I'(p) in terms of

thermodynamic quantities is obtained:

2\ _ 1 (op
B)- ) - e

According to Reference 7, "= 2 s - 1 at normal density, or
pressure p = 0, But for higher pressure, a constant value of I"was
proposed by Rae (Ref. 7), who matched the Mie- Gruneisen equation of-
state vwith the Rankine~Hugoniot Relation of ¢, s material at very high

shock strength, It is
r=2(s-1) . (A-3)

It should be pointed out here that the range of validity of this expression
of I'is uncertain since there is no way to justify it by means of the avail-
able experimental data of metals, In spite of this, Equation A-3 is used

in this work for the sake of convenience.

Now, a thermodynamic relation can be derived to yield the
adiabatic sound speed as a function of delatational wave speed c and the
material parameter s, The derivation presented here is based on
Reference 28. To do this, the Rankine-Hugoniot equation is differen-
tiated first as follows.
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R S 1 -
{(Po p)dp (p + po) d(p)] . (A-4)

Combined with the second law of thermodynamics, Equation A-4

becomes

1 1{/1 1 1
TdS = de + pdl=]) = =|[{—_.= _ _ L . A-
TP (p) 2 [(po p) dp - (p - po) d(P)] (A-5)

A general expression of the equation of state may be written

p = plp, S) ;
hence
dp Op
dp = dp+ ds , (A"é)
dp g 2S 0

where (gf) = a 1is the adiabatic sound speed, and
S

ap) _ (3p (g:r _ T (3p :
(as) - (aT) as) - CV(BT) ' (A-7)

(ip—) - eTT . (A-8)

Then Equation A-6 can be written as

dp = a?dp+pI'TdS . (A-9)
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Eliminating the term T dS from Equations A-5 and A-9 gives a
relation between the adiabatic sound speed, a?, and the slope of the
Rankine- Hugoniot curve in (p, p) plane, c?g.y, which is

dp a®? - (P~ Pg)/2p
dp

TR e T L))

]

or
a? = ofy 1-3(12—- 1) +I(—-°——) (fﬂ) ¢z . (A-10)
R-H 2\p, 2 \po c? p
The shock relations of ¢, s materials can be expressed as
follows
U=c+ sU
s M
L1 _ 8 (A-11)
Po 1+(S-1) M,
1231 =Mi (Mg - 1)
po C* P
and
2 - dp _ dP/c/Ms

“ " R-H = dp ~ dp/c /Mg

1

2
= (Mg 1)1+ (s - 1)M)2

where Mg = U/c .
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Substituting Equation A-11 in Equation A-10 yields

1
a =% [(3s - 1)(s- 1) M& - (282 - 6s + 2)M,- (25 - 1)]? (A-12)
and
3
_a (3s - 1) Mg~ (28 - 1) )
R-H [(ZMS— ). 1+(s-1) MSJ : (A-13)

The ratio of a/c R.}y depends upon s and Mg only,
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